Monday, July 13, 2009

Heart-lung machine




The invention: The first artificial device to oxygenate and circulate
blood during surgery, the heart-lung machine began the era of
open-heart surgery.
The people behind the invention:
John H. Gibbon, Jr. (1903-1974), a cardiovascular surgeon
Mary Hopkinson Gibbon (1905- ), a research technician
Thomas J. Watson (1874-1956), chairman of the board of IBM
T. L. Stokes and J. B. Flick, researchers in Gibbon’s laboratory
Bernard J. Miller (1918- ), a cardiovascular surgeon and
research associate
Cecelia Bavolek, the first human to undergo open-heart surgery
successfully using the heart-lung machine
A Young Woman’s Death
In the first half of the twentieth century, cardiovascular medicine
had many triumphs. Effective anesthesia, antiseptic conditions, and
antibiotics made surgery safer. Blood-typing, anti-clotting agents,
and blood preservatives made blood transfusion practical. Cardiac
catheterization (feeding a tube into the heart), electrocardiography,
and fluoroscopy (visualizing living tissues with an X-ray machine)
made the nonsurgical diagnosis of cardiovascular problems possible.
As of 1950, however, there was no safe way to treat damage or defects
within the heart. To make such a correction, this vital organ’s
function had to be interrupted. The problem was to keep the body’s
tissues alive while working on the heart. While some surgeons practiced
so-called blind surgery, in which they inserted a finger into the
heart through a small incision without observing what they were attempting
to correct, others tried to reduce the body’s need for circulation
by slowly chilling the patient until the heart stopped. Still other
surgeons used “cross-circulation,” in which the patient’s circulation
was connected to a donor’s circulation. All these approaches carried
profound risks of hemorrhage, tissue damage, and death.
In February of 1931, Gibbon witnessed the death of a young woman whose lung circulation was blocked by a blood clot. Because
her blood could not pass through her lungs, she slowly lost
consciousness from lack of oxygen. As he monitored her pulse and
breathing, Gibbon thought about ways to circumvent the obstructed
lungs and straining heart and provide the oxygen required. Because
surgery to remove such a blood clot was often fatal, the woman’s
surgeons operated only as a last resort. Though the surgery took
only six and one-half minutes, she never regained consciousness.
This experience prompted Gibbon to pursue what few people then
considered a practical line of research: a way to circulate and oxygenate
blood outside the body.
A Woman’s Life Restored
Gibbon began the project in earnest in 1934, when he returned to
the laboratory of Edward D. Churchill at Massachusetts General
Hospital for his second surgical research fellowship. He was assisted
by Mary Hopkinson Gibbon. Together, they developed, using
cats, a surgical technique for removing blood froma vein, supplying
the blood with oxygen, and returning it to an artery using tubes inserted
into the blood vessels. Their objective was to create a device
that would keep the blood moving, spread it over a very thin layer
to pick up oxygen efficiently and remove carbon dioxide, and avoid
both clotting and damaging blood cells. In 1939, they reported that
prolonged survival after heart-lung bypass was possible in experimental
animals.
WorldWar II (1939-1945) interrupted the progress of this work; it
was resumed by Gibbon at Jefferson Medical College in 1944. Shortly
thereafter, he attracted the interest of Thomas J.Watson, chairman of
the board of the International Business Machines (IBM) Corporation,
who provided the services of IBM’s experimental physics laboratory
and model machine shop as well as the assistance of staff engineers.
IBM constructed and modified two experimental machines
over the next seven years, and IBM engineers contributed significantly
to the evolution of a machine that would be practical in humans.
Gibbon’s first attempt to use the pump-oxygenator in a human
being was in a fifteen-month-old baby. This attempt failed, not because of a malfunction or a surgical mistake but because of a misdiagnosis.
The child died following surgery because the real problem
had not been corrected by the surgery.
On May 6, 1953, the heart-lung machine was first used successfully
on Cecelia Bavolek. In the six months before surgery, Bavolek
had been hospitalized three times for symptoms of heart failure
when she tried to engage in normal activity. While her circulation
was connected to the heart-lung machine for forty-five minutes, the
surgical team headed by Gibbon was able to close an opening between
her atria and establish normal heart function. Two months
later, an examination of the defect revealed that it was fully closed;
Bavolek resumed a normal life. The age of open-heart surgery had
begun.
Consequences
The heart-lung bypass technique alone could not make openheart
surgery truly practical. When it was possible to keep tissues
alive by diverting blood around the heart and oxygenating it, other
questions already under investigation became even more critical:
how to prolong the survival of bloodless organs, how to measure
oxygen and carbon dioxide levels in the blood, and how to prolong
anesthesia during complicated surgery. Thus, following the first
successful use of the heart-lung machine, surgeons continued to refine
the methods of open-heart surgery.
The heart-lung apparatus set the stage for the advent of “replacement
parts” for many types of cardiovascular problems. Cardiac
valve replacement was first successfully accomplished in 1960 by
placing an artificial ball valve between the left atrium and ventricle.
In 1957, doctors performed the first coronary bypass surgery, grafting
sections of a leg vein into the heart’s circulation system to divert
blood around clogged coronary arteries. Likewise, the first successful
heart transplant (1967) and the controversial Jarvik-7 artificial
heart implantation (1982) required the ability to stop the heart and
keep the body’s tissues alive during time-consuming and delicate
surgical procedures. Gibbon’s heart-lung machine paved the way
for all these developments.

3 comments:

  1. Until a open-heart surgery (such as valve surgery), the heart-lung machine takes over the functions of the heart and lungs so that the heart can be carefully stopped. The surgeon can then operate in a blood-free surgical field.

    ReplyDelete
  2. This blog is fantastic; what you show us is very interesting and is really good written. It’s just great!!

    ReplyDelete